When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .

  3. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    The following particular axiom set is from Kunen (1980). The axioms in order below are expressed in a mixture of first order logic and high-level abbreviations. Axioms 1–8 form ZF, while the axiom 9 turns ZF into ZFC. Following Kunen (1980), we use the equivalent well-ordering theorem in place of the axiom of choice for axiom 9.

  4. Arithmetices principia, nova methodo exposita - Wikipedia

    en.wikipedia.org/wiki/Arithmetices_principia...

    The 1889 treatise Arithmetices principia, nova methodo exposita (The principles of arithmetic, presented by a new method) by Giuseppe Peano is widely considered to be a seminal document in mathematical logic and set theory, [1] [2] introducing what is now the standard axiomatization of the natural numbers, and known as the Peano axioms, as well ...

  5. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is also a promising foundational system for much of mathematics. Since the publication of the first volume of Principia Mathematica, it has been claimed that most (or even all) mathematical theorems can be derived using an aptly designed set of axioms for set theory, augmented with many definitions, using first or second-order logic.

  6. Morse–Kelley set theory - Wikipedia

    en.wikipedia.org/wiki/Morse–Kelley_set_theory

    While von Neumann–Bernays–Gödel set theory is a conservative extension of Zermelo–Fraenkel set theory (ZFC, the canonical set theory) in the sense that a statement in the language of ZFC is provable in NBG if and only if it is provable in ZFC, Morse–Kelley set theory is a proper extension of ZFC. Unlike von Neumann–Bernays–Gödel ...

  7. Axiom of infinity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_infinity

    Using first-order logic primitive symbols, the axiom can be expressed as follows: [2] ( ( ()) ( ( (( =))))). In English, this sentence means: "there exists a set 𝐈 such that the empty set is an element of it, and for every element of 𝐈, there exists an element of 𝐈 such that is an element of , the elements of are also elements of , and nothing else is an element of ."

  8. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    In set theory, an infinite set is not considered to be created by some mathematical process such as "adding one element" that is then carried out "an infinite number of times". Instead, a particular infinite set (such as the set of all natural numbers) is said to already exist, "by fiat", as an assumption or an axiom. Given this infinite set ...

  9. Axiom schema of specification - Wikipedia

    en.wikipedia.org/wiki/Axiom_schema_of_specification

    In many popular versions of axiomatic set theory, the axiom schema of specification, [1] also known as the axiom schema of separation (Aussonderungsaxiom), [2] subset axiom [3], axiom of class construction, [4] or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.