Search results
Results From The WOW.Com Content Network
In variational Bayesian methods, the evidence lower bound (often abbreviated ELBO, also sometimes called the variational lower bound [1] or negative variational free energy) is a useful lower bound on the log-likelihood of some observed data.
In mathematics, the second moment method is a technique used in probability theory and analysis to show that a random variable has positive probability of being positive. More generally, the "moment method" consists of bounding the probability that a random variable fluctuates far from its mean, by using its moments.
In statistics, the Q-function is the ... The geometric mean of the upper and lower bound gives a suitable approximation for (): () +, Tighter bounds ...
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.
Fano's inequality can be interpreted as a way of dividing the uncertainty of a conditional distribution into two questions given an arbitrary predictor. The first question, corresponding to the term (), relates to the uncertainty of the predictor.
In statistics, the Chapman–Robbins bound or Hammersley–Chapman–Robbins bound is a lower bound on the variance of estimators of a deterministic parameter. It is a generalization of the Cramér–Rao bound; compared to the Cramér–Rao bound, it is both tighter and applicable to a wider range of problems. However, it is usually more ...
The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above.
The probability that an uncertain number represented by a p-box D is less than zero is the interval Pr(D < 0) = [F(0), F̅(0)], where F̅(0) is the left bound of the probability box D and F(0) is its right bound, both evaluated at zero. Two uncertain numbers represented by probability boxes may then be compared for numerical magnitude with the ...