Search results
Results From The WOW.Com Content Network
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
Heat capacity, c p: 0.212 J/(mol K) at −200°C Liquid properties Std enthalpy change of formation, Δ f H o liquid: −318.2 kJ/mol Standard molar entropy, S o liquid: 180 J/(mol K) Heat capacity, c p: 2.68 J/(gK) at 20°C-25°C Gas properties Std enthalpy change of formation, Δ f H o gas: −261.1 kJ/mol Standard molar entropy, S o gas: 333 ...
Latent heat can be understood as hidden energy which is supplied or extracted to change the state of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas). [1] [2]
The isobaric change in enthalpy H above the common reference temperature of 298.15 K (25 °C) is called the high temperature heat content, the sensible heat, or the relative high-temperature enthalpy, and called henceforth the heat content.
of fusion, Δ fus H o +4.9 kJ/mol Std entropy change of fusion, Δ fus S o +31 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o +42.3 ± 0.4 kJ/mol [4] Std entropy change of vaporization, Δ vap S o: 109.67 J/(mol·K) Molal freezing point constant: −1.99 °C kg/mol Solid properties Std enthalpy change of formation, Δ f H o solid ...
Heat capacity, c p [2] 96 J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid: −249.4 kJ/mol Standard molar entropy, S o liquid: 200.4 J/(mol K) Enthalpy of combustion, Δ c H o –1785.7 kJ/mol Heat capacity, c p: 125.5 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas: −218.5 kJ/mol Standard ...
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds