Search results
Results From The WOW.Com Content Network
The zeta potential is an important and readily measurable indicator of the stability of colloidal dispersions. The magnitude of the zeta potential indicates the degree of electrostatic repulsion between adjacent, similarly charged particles in a dispersion. For molecules and particles that are small enough, a high zeta potential will confer ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.
Smoluchowski's sedimentation potential is defined where ε 0 is the permitivity of free space, D the dimensionless dielectric constant, ξ the zeta potential, g the acceleration due to gravity, Φ the particle volume fraction, ρ the particle density, ρ o the medium density, λ the specific volume conductivity, and η the viscosity. [8]
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
Suppose for example one desires to compute the derivative of the internal energy. The following procedure should be considered: The following procedure should be considered: Place oneself in the thermodynamic potential of interest, namely ( G {\displaystyle G} , H {\displaystyle H} , U {\displaystyle U} , F {\displaystyle F} ).
Zeta potential titration is a titration of heterogeneous systems, for example colloids and emulsions. Solids in such systems have very high surface area. This type of titration is used to study the zeta potential of these surfaces under different conditions. Details of zeta potential definition and measuring techniques can be found in the ...
The potential of zero charge is used for determination of the absolute electrode potential in a given electrolyte. IUPAC also defines the potential difference with respect to the potential of zero charge as: E pzc = E − E σ=0. where: E pzc is the electrode potential difference with respect to the point of zero charge, E σ=0