Search results
Results From The WOW.Com Content Network
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.
An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids.
In a conventional solar cell light is absorbed by a semiconductor, producing an electron-hole (e-h) pair; the pair may be bound and is referred to as an exciton.This pair is separated by an internal electrochemical potential (present in p-n junctions or Schottky diodes) and the resulting flow of electrons and holes creates an electric current.
The net current I m in relationship is made up of the currents towards contact m and of the current transmitted from the contact m to all other contacts l ≠ m. That current equals the voltage μ m / e of contact m multiplied with the Hall conductivity of 2e 2 / h per edge channel. Fig 2: Contact arrangement for measurement of SdH oscillations
The "holes" are, in effect, electron vacancies in the valence-band electron population of the semiconductor and are treated as charge carriers because they are mobile, moving from atom site to atom site. In n-type semiconductors, electrons in the conduction band move through the crystal, resulting in an electric current.
The Wannier equation can be generalized by including the presence of many electrons and holes in the excited system. One can start from the general theory of either optical excitations or light emission in semiconductors that can be systematically described using the semiconductor Bloch equations (SBE) or the semiconductor luminescence equations (SLE), respectively.
When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice.