Search results
Results From The WOW.Com Content Network
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
[4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
The total center of mass of the forks, cork, and toothpick is on top of the pen's tip. Significant aspects of the motion of an extended body can be understood by imagining the mass of that body concentrated to a single point, known as the center of mass. The location of a body's center of mass depends upon how that body's material is distributed.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
For a constant mass, force equals mass times acceleration (=). For every action, there is an equal and opposite reaction. (In other words, whenever one body exerts a force F → {\displaystyle {\vec {F}}} onto a second body, (in some cases, which is standing still) the second body exerts the force − F → {\displaystyle -{\vec {F}}} back onto ...