When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Variants of this algorithm are available in MATLAB as the routine lsqnonneg [8] [1] and in SciPy as optimize.nnls. [9] Many improved algorithms have been suggested since 1974. [1] Fast NNLS (FNNLS) is an optimized version of the Lawson–Hanson algorithm. [2]

  3. Residual (numerical analysis) - Wikipedia

    en.wikipedia.org/wiki/Residual_(numerical_analysis)

    When one does not know the exact solution, one may look for the approximation with small residual. Residuals appear in many areas in mathematics, including iterative solvers such as the generalized minimal residual method, which seeks solutions to equations by systematically minimizing the residual.

  4. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    When this is not the case, the errors are said to be heteroskedastic, or to have heteroskedasticity, and this behaviour will be reflected in the residuals ^ estimated from a fitted model. Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals.

  5. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    For example, the lack-of-fit test for assessing the correctness of the functional part of the model can aid in interpreting a borderline residual plot. One common situation when numerical validation methods take precedence over graphical methods is when the number of parameters being estimated is relatively close to the size of the data set.

  6. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .

  7. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  8. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  9. Statistical graphics - Wikipedia

    en.wikipedia.org/wiki/Statistical_graphics

    They can also provide insight into a data set to help with testing assumptions, model selection and regression model validation, estimator selection, relationship identification, factor effect determination, and outlier detection. In addition, the choice of appropriate statistical graphics can provide a convincing means of communicating the ...