Search results
Results From The WOW.Com Content Network
Similarly, any decimal fraction a/10 m, such as 1/100 or 37/1000, can be exactly represented in fixed point with a power-of-ten scaling factor 1/10 n with any n ≥ m. This decimal format can also represent any binary fraction a /2 m , such as 1/8 (0.125) or 17/32 (0.53125).
A handy chart of decimal-fraction equivalents, 0 to 1 by 64ths. Prints nicely as 11x17 in landscape orientation. Useful for machinists who work with inch-based measurements. Date: 24 October 2007: Source: Own work: Author: Three-quarter-ten
0.4 Vulgar Fraction Two Fifths 2156 8534 ⅗ 3 ⁄ 5: 0.6 Vulgar Fraction Three Fifths 2157 8535 ⅘ 4 ⁄ 5: 0.8 Vulgar Fraction Four Fifths 2158 8536 ⅙ 1 ⁄ 6: 0.166... Vulgar Fraction One Sixth 2159 8537 ⅚ 5 ⁄ 6: 0.833... Vulgar Fraction Five Sixths 215A 8538 ⅛ 1 ⁄ 8: 0.125 Vulgar Fraction One Eighth 215B 8539 ⅜ 3 ⁄ 8: 0.375 ...
Dividing the numerator and denominator of a fraction by the same non-zero number yields an equivalent fraction: if the numerator and the denominator of a fraction are both divisible by a number (called a factor) greater than 1, then the fraction can be reduced to an equivalent fraction with a smaller numerator and a smaller denominator.
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
For example, in the decimal system (base 10), the numeral 4327 means (4×10 3) + (3×10 2) + (2×10 1) + (7×10 0), noting that 10 0 = 1. In general, if b is the base, one writes a number in the numeral system of base b by expressing it in the form a n b n + a n − 1 b n − 1 + a n − 2 b n − 2 + ... + a 0 b 0 and writing the enumerated ...
Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as follows:
To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is: 50 / 100 × 40 / 100 = 0.50 × 0.40 = 0.20 = 20 / 100 = 20%. It is not correct to divide by 100 and use the percent sign at the same time; it would literally imply ...