Ad
related to: primitive polynomial codes list youtube today free episodes live streaming
Search results
Results From The WOW.Com Content Network
Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...
A polynomial code is cyclic if and only if the generator polynomial divides . If the generator polynomial is primitive, then the resulting code has Hamming distance at least 3, provided that . In BCH codes, the generator polynomial is chosen to have specific roots in an extension field, in a way that achieves high Hamming distance.
In different branches of mathematics, primitive polynomial may refer to: Primitive polynomial (field theory) , a minimal polynomial of an extension of finite fields Primitive polynomial (ring theory) , a polynomial with coprime coefficients
The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x n − 1. Therefore, the polynomial code defined by g(x) is a cyclic code.
In this case, a primitive element is also called a primitive root modulo q. For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial.
A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...
By 1963 (or possibly earlier), J. J. Stone (and others) recognized that Reed–Solomon codes could use the BCH scheme of using a fixed generator polynomial, making such codes a special class of BCH codes, [4] but Reed–Solomon codes based on the original encoding scheme are not a class of BCH codes, and depending on the set of evaluation ...
A monic irreducible polynomial of degree n having coefficients in the finite field GF(q), where q = p t for some prime p and positive integer t, is called a primitive polynomial if all of its roots are primitive elements of GF(q n). [2] [3] In the polynomial representation of the finite field, this implies that x is a primitive element.