When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    In particle accelerators, velocity can be very high (close to the speed of light in vacuum) so the same rest mass now exerts greater inertia (relativistic mass) thereby requiring greater force for the same centripetal acceleration, so the equation becomes: [11] = where = is the Lorentz factor.

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The net acceleration may be resolved into two components: tangential acceleration and centripetal acceleration. Unlike tangential acceleration, centripetal acceleration is present in both uniform and non-uniform circular motion. This diagram shows the normal force (n) pointing in other directions rather than opposite to the weight force.

  4. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    Transverse acceleration (perpendicular to velocity) causes a change in direction. If it is constant in magnitude and changing in direction with the velocity, circular motion ensues. Taking two derivatives of the particle's coordinates concerning time gives the centripetal acceleration

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Timing diagram over one revolution for angle, angular velocity, angular acceleration, and angular jerk. Consider a rigid body rotating about a fixed axis in an inertial reference frame. If its angular position as a function of time is θ(t), the angular velocity, acceleration, and jerk can be expressed as follows:

  7. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.

  8. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    An oscillating pendulum, with velocity and acceleration marked. It experiences both tangential and centripetal acceleration. Components of acceleration for a curved motion. The tangential component a t is due to the change in speed of traversal, and points along the curve in the direction of the velocity vector (or in the opposite direction).

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...