Search results
Results From The WOW.Com Content Network
This is unfounded because that law has relativistic corrections. For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1]
Use of LaTeX for separately displayed formulas and more complicated inline formulas; Use of LaTeX for formulas involving symbols that are not regularly rendered in Unicode (see MOS:BBB) Avoid formulas in section headings, and when this is necessary, use raw HTML (see Finite field for an example)
Thus, the Schwarzian derivative precisely measures the degree to which a function fails to be a Möbius transformation. [1] If g is a Möbius transformation, then the composition g o f has the same Schwarzian derivative as f; and on the other hand, the Schwarzian derivative of f o g is given by the chain rule
The exterior Schwarzschild solution with r > r s is the one that is related to the gravitational fields of stars and planets. The interior Schwarzschild solution with 0 ≤ r < r s, which contains the singularity at r = 0, is completely separated from the outer patch by the singularity at r = r s. The Schwarzschild coordinates therefore give no ...
In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).
The extension of the exterior region of the Schwarzschild vacuum solution inside the event horizon of a spherically symmetric black hole is not static inside the horizon, and the family of (spacelike) nested spheres cannot be extended inside the horizon, so the Schwarzschild chart for this solution necessarily breaks down at the horizon.
The first derivative of a function f of a real variable at a point x can be approximated using a five-point stencil as: [1] ′ (+) + (+) + The center point f(x) itself is not involved, only the four neighboring points.
Both Beer's Law and Planck's Law can be derived from Schwarzschild's equation. [14] In a sense, they are corollaries of Schwarzschild's equation. When the spectral intensity of radiation is not changing as it passes through a medium, dI λ = 0. In that situation, Schwarzschild's equation simplifies to Planck's law: