Search results
Results From The WOW.Com Content Network
Usually the true catalyst is an expensive and complex molecule and added in quantities as small as possible. The stoichiometric catalyst on the other hand should be cheap and abundant. [citation needed] "Sacrificial catalysts" are more accurately referred to by their actual role in the catalytic cycle, for example as a reductant.
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
Often, substances are intentionally added to the reaction feed or on the catalyst to influence catalytic activity, selectivity, and/or stability. These compounds are called promoters. For example, alumina (Al 2 O 3) is added during ammonia synthesis to providing greater stability by slowing sintering processes on the Fe-catalyst. [2]
The first step in the WGS reaction is the high temperature shift which is carried out at temperatures between 320 °C and 450 °C. As mentioned before, the catalyst is a composition of iron-oxide, Fe 2 O 3 (90-95%), and chromium oxides Cr 2 O 3 (5-10%) which have an ideal activity and selectivity at these temperatures.
These catalysts initiate radical chain reactions, autoxidation that produce organic radicals that combine with oxygen to give hydroperoxide intermediates. Generally the selectivity of oxidation is determined by bond energies. For example, benzylic C-H bonds are replaced by oxygen faster than aromatic C-H bonds. [2]
The reaction proceeds through generation of an acylium center. The reaction is completed by deprotonation of the arenium ion by AlCl 4 −, regenerating the AlCl 3 catalyst. However, in contrast to the truly catalytic alkylation reaction, the formed ketone is a moderate Lewis base, which forms a complex with the strong Lewis acid aluminum ...
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.
The main disadvantage of direct acylation is the unfavorable chemical equilibrium that must be remedied (e.g. by a large excess of one of the reagents), or by the removal of water (e.g. by using Dean–Stark distillation or including a drying agent such as anhydrous salts, [5] molecular sieves, or a large amount of certain acids as catalyst in ...