Search results
Results From The WOW.Com Content Network
Tear resistance (or tear strength) is a measure of how well a material can withstand the effects of tearing. [1] It is a useful engineering measurement for a wide variety of materials by many different test methods .
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.
Compression set B is (like Compression set A) defined as the percentage of specimen deflection after it has been left in normal (uncompressed) conditions for 30 minutes. C B , the compression set B is given by C B = [(t o - t i ) / (t o - t n )] * 100 where t o is the original specimen thickness, t i is the specimen thickness after testing and ...
Fracture toughness tests are performed to quantify the resistance of a material to failure by cracking. Such tests result in either a single-valued measure of fracture toughness or in a resistance curve. Resistance curves are plots where fracture toughness parameters (K, J etc.) are plotted against parameters characterizing the propagation of ...
The equation for stress intensity factor for a specimen with a single crack is given in the following equation where Y is a geometric parameter, s is the stress being applied and a is the crack length. For an edge crack ‘a’ is the total length of the crack where as a crack not on the edge has a crack length of ‘2a’.
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
The van der Pauw Method is a technique commonly used to measure the resistivity and the Hall coefficient of a sample. Its strength lies in its ability to accurately measure the properties of a sample of any arbitrary shape, as long as the sample is approximately two-dimensional (i.e. it is much thinner than it is wide), solid (no holes), and the electrodes are placed on its perimeter.