Search results
Results From The WOW.Com Content Network
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
The image of a function is the image of its entire domain, also known as the range of the function. [3] This last usage should be avoided because the word "range" is also commonly used to mean the codomain of f . {\displaystyle f.}
Reciprocal polynomial, a polynomial obtained from another polynomial by reversing its coefficients; Reciprocal rule, a technique in calculus for calculating derivatives of reciprocal functions; Reciprocal spiral, a plane curve; Reciprocal averaging, a statistical technique for aggregating categorical data
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
If the original random variable X is uniformly distributed on the interval (a,b), where a>0, then the reciprocal variable Y = 1 / X has the reciprocal distribution which takes values in the range (b −1,a −1), and the probability density function in this range is =, and is zero elsewhere.
Reciprocal polynomials have several connections with their original polynomials, including: deg p = deg p ∗ if is not 0.; p(x) = x n p ∗ (x −1). [2]α is a root of a polynomial p if and only if α −1 is a root of p ∗.
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).