When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Noble gas - Wikipedia

    en.wikipedia.org/wiki/Noble_gas

    The noble gases' inertness, or tendency not to react with other chemical substances, results from their electron configuration: their outer shell of valence electrons is "full", giving them little tendency to participate in chemical reactions. Only a few hundred noble gas compounds are known to exist. The inertness of noble gases makes them ...

  3. Chemically inert - Wikipedia

    en.wikipedia.org/wiki/Chemically_inert

    The noble gases (helium, neon, argon, krypton, xenon and radon) were previously known as 'inert gases' because of their perceived lack of participation in any chemical reactions. The reason for this is that their outermost electron shells (valence shells) are completely filled, so that they have little tendency to gain or lose electrons.

  4. Noble gas compound - Wikipedia

    en.wikipedia.org/wiki/Noble_gas_compound

    In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 8 or 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon .

  5. Properties of metals, metalloids and nonmetals - Wikipedia

    en.wikipedia.org/wiki/Properties_of_metals...

    From left to right in the periodic table, the nonmetals can be divided into the reactive nonmetals and the noble gases. The reactive nonmetals near the metalloids show some incipient metallic character, such as the metallic appearance of graphite, black phosphorus, selenium and iodine. The noble gases are almost completely inert.

  6. Monatomic gas - Wikipedia

    en.wikipedia.org/wiki/Monatomic_gas

    Noble gases have a full outer valence shell making them rather non-reactive species. [2] While these elements have been described historically as completely inert, chemical compounds have been synthesized with all but neon and helium. [3] When grouped together with the homonuclear diatomic gases such as nitrogen (N 2), the noble gases are ...

  7. Radon - Wikipedia

    en.wikipedia.org/wiki/Radon

    Radon is a member of the zero-valence elements that are called noble gases, and is chemically not very reactive. The 3.8-day half-life of 222 Rn makes it useful in physical sciences as a natural tracer. Because radon is a gas at standard conditions, unlike its decay-chain parents, it can readily be extracted from them for research. [20]

  8. Inert gas - Wikipedia

    en.wikipedia.org/wiki/Inert_gas

    Like the noble gases, the tendency for non-reactivity is due to the valence, the outermost electron shell, being complete in all the inert gases. [4] This is a tendency, not a rule, as all noble gases and other "inert" gases can react to form compounds under some conditions.

  9. Goldschmidt classification - Wikipedia

    en.wikipedia.org/wiki/Goldschmidt_classification

    The noble gases do not form stable compounds and occur as monatomic gases, while nitrogen, although highly reactive as the free atom, bonds so strongly into diatomic molecular nitrogen that all oxides of nitrogen are thermodynamically unstable with respect to nitrogen and oxygen.