When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/ShapiroWilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  3. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, Shapiro–Wilk test, and; Pearson's chi-squared test.

  4. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    The choice between these two groups needs to be justified. Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as ...

  5. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    In assessing whether a given distribution is suited to a data-set, the following tests and their underlying measures of fit can be used: Bayesian information criterion; Kolmogorov–Smirnov test; Cramér–von Mises criterion; Anderson–Darling test; Berk-Jones tests [1] [2] Shapiro–Wilk test; Chi-squared test; Akaike information criterion ...

  6. Shapiro–Francia test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Francia_test

    The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test .

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.

  8. Probability plot correlation coefficient plot - Wikipedia

    en.wikipedia.org/wiki/Probability_plot...

    λ = 0.14: distribution is approximately normal; λ = 0.5: distribution is U-shaped; λ = 1: distribution is exactly uniform(−1, 1) If the Tukey lambda PPCC plot gives a maximum value near 0.14, one can reasonably conclude that the normal distribution is a good model for the data.

  9. Anderson–Darling test - Wikipedia

    en.wikipedia.org/wiki/Anderson–Darling_test

    Empirical testing has found [5] that the Anderson–Darling test is not quite as good as the Shapiro–Wilk test, but is better than other tests. Stephens [1] found to be one of the best empirical distribution function statistics for detecting most departures from normality.