When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/ShapiroWilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  3. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, Shapiro–Wilk test, and; Pearson's chi-squared test.

  4. Shapiro–Francia test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Francia_test

    The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test .

  5. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    In assessing whether a given distribution is suited to a data-set, the following tests and their underlying measures of fit can be used: Bayesian information criterion; Kolmogorov–Smirnov test; Cramér–von Mises criterion; Anderson–Darling test; Berk-Jones tests [1] [2] Shapiro–Wilk test; Chi-squared test; Akaike information criterion ...

  6. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    The choice between these two groups needs to be justified. Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as ...

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.

  8. Probability plot correlation coefficient plot - Wikipedia

    en.wikipedia.org/wiki/Probability_plot...

    λ = 0.14: distribution is approximately normal; λ = 0.5: distribution is U-shaped; λ = 1: distribution is exactly uniform(−1, 1) If the Tukey lambda PPCC plot gives a maximum value near 0.14, one can reasonably conclude that the normal distribution is a good model for the data.

  9. Category:Normality tests - Wikipedia

    en.wikipedia.org/wiki/Category:Normality_tests

    It should only contain pages that are Normality tests or lists of Normality tests, as well as subcategories containing those things (themselves set categories). Topics about Normality tests in general should be placed in relevant topic categories .