Search results
Results From The WOW.Com Content Network
L is a subclass of NL, which is the class of languages decidable in logarithmic space on a nondeterministic Turing machine.A problem in NL may be transformed into a problem of reachability in a directed graph representing states and state transitions of the nondeterministic machine, and the logarithmic space bound implies that this graph has a polynomial number of vertices and edges, from ...
Semi-log plot of the Internet host count over time shown on a logarithmic scale. A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences between the magnitudes of the numbers involved.
In mathematics, the logarithmic norm is a real-valued functional on operators, and is derived from either an inner product, a vector norm, or its induced operator norm.The logarithmic norm was independently introduced by Germund Dahlquist [1] and Sergei Lozinskiĭ in 1958, for square matrices.
In computational complexity theory, a log-space computable function is a function : that requires only () memory to be computed (this restriction does not apply to the size of the output). The computation is generally done by means of a log-space transducer .
NL is a generalization of L, the class for logspace problems on a deterministic Turing machine. Since any deterministic Turing machine is also a nondeterministic Turing machine, we have that L is contained in NL. NL can be formally defined in terms of the computational resource nondeterministic space (or NSPACE) as NL = NSPACE(log n).
L or LOGSPACE is the set of problems that can be solved by a deterministic Turing machine using only () memory space with regards to input size. Even a single counter that can index the entire n {\displaystyle n} -bit input requires log n {\displaystyle \log n} space, so LOGSPACE algorithms can maintain only a constant number of counters ...
In computational complexity theory, SL (Symmetric Logspace or Sym-L) is the complexity class of problems log-space reducible to USTCON (undirected s-t connectivity), which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component.
Logspace hierarchy [ edit ] As a corollary, in the same article, Immerman proved that, using descriptive complexity 's equality between NL and FO(Transitive Closure) , the logarithmic hierarchy, i.e. the languages decided by an alternating Turing machine in logarithmic space with a bounded number of alternations, is the same class as NL.