Search results
Results From The WOW.Com Content Network
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
Wavelength depends on the medium (for example, vacuum, air, or water) that a wave travels through. Examples of waves are sound waves, light, water waves and periodic electrical signals in a conductor. A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic ...
The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves are called "primary waves", or "P-waves" in geophysics. Water waves involve both longitudinal and transverse motions ...
A monochromatic wave (a wave of a single frequency) consists of successive troughs and crests, and the distance between two adjacent crests or troughs is called the wavelength. Waves of the electromagnetic spectrum vary in size, from very long radio waves longer than a continent to very short gamma rays smaller than atom nuclei.
1.5 kW is the maximum legal power output of a US ham radio station. [12] 60 dBm: 1 kW = 1,000 W: Typical combined radiated RF power of microwave oven elements 55 dBm ~300 W: Typical single-channel RF output power of a K u band geostationary satellite: 50 dBm: 100 W: Typical total thermal radiation emitted by a human body, peak at 31.5 THz (9.5 μm)
As a gravitational wave passes an observer, that observer will find spacetime distorted by the effects of strain. Distances between objects increase and decrease rhythmically as the wave passes, at a frequency equal to that of the wave. The magnitude of this effect is inversely proportional to the distance (not distance squared) from the source.
Second-harmonic generation (SHG), also known as frequency doubling, is the lowest-order wave-wave nonlinear interaction that occurs in various systems, including optical, radio, atmospheric, and magnetohydrodynamic systems. [1] As a prototype behavior of waves, SHG is widely used, for example, in doubling laser frequencies.
Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713