When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.

  3. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    5.1 Properties of the diagonals in quadrilaterals. ... an antiparallelogram whose sides are two opposite sides and the two diagonals of a rectangle, ...

  4. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    For a cyclic orthodiagonal quadrilateral (one that can be inscribed in a circle), suppose the intersection of the diagonals divides one diagonal into segments of lengths p 1 and p 2 and divides the other diagonal into segments of lengths q 1 and q 2. Then [10] (the first equality is Proposition 11 in Archimedes' Book of Lemmas)

  5. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero.

  6. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.

  7. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...

  8. Complete quadrangle - Wikipedia

    en.wikipedia.org/wiki/Complete_quadrangle

    A complete quadrangle (at left) and a complete quadrilateral (at right).. In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting the six pairs of points.

  9. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    The two diagonals and the two tangency chords are concurrent. [11] [10]: p.11 One way to see this is as a limiting case of Brianchon's theorem, which states that a hexagon all of whose sides are tangent to a single conic section has three diagonals that meet at a point. From a tangential quadrilateral, one can form a hexagon with two 180 ...