Ad
related to: what is alveolar pressure
Search results
Results From The WOW.Com Content Network
Alveolar pressure (P alv) is the pressure of air inside the lung alveoli. When the glottis is opened and no air is flowing into or out of the lungs, alveolar pressure is equal to the atmospheric pressure, that is, zero cmH 2 O .
The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.
Alveolar pressure (PA) at end expiration is equal to atmospheric pressure (0 cm H 2 O differential pressure, at zero flow), plus or minus 2 cm H 2 O (1.5 mmHg) throughout the lung. On the other hand, gravity causes a gradient in blood pressure between the top and bottom of the lung of 20 mmHg in the erect position (roughly half of that in the ...
The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (p A O 2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in clinical medicine, probably because of the complicated appearance of its classic forms.
Transpulmonary pressure is the difference between the alveolar pressure and the intrapleural pressure in the pleural cavity. During human ventilation, air flows because of pressure gradients. P tp = P alv – P ip. Where P tp is transpulmonary pressure, P alv is alveolar pressure, and P ip is intrapleural pressure.
Positive end-expiratory pressure (PEEP) is the pressure in the lungs (alveolar pressure) above atmospheric pressure (the pressure outside of the body) that exists at the end of expiration. [1] The two types of PEEP are extrinsic PEEP (PEEP applied by a ventilator) and intrinsic PEEP (PEEP caused by an incomplete exhalation).
Dynamic compression of the airways results when intrapleural pressure equals or exceeds alveolar pressure, which causes dynamic collapsing of the lung airways. It is termed dynamic given the transpulmonary pressure (alveolar pressure − intrapleural pressure) varies based on factors including lung volume, compliance, resistance, existing pathologies, etc. [1]
The alveolar air pressure is therefore always close to atmospheric air pressure (about 100 kPa at sea level) at rest, with the pressure gradients because of lungs contraction and expansion cause air to move in and out of the lungs during breathing rarely exceeding 2–3 kPa. [18] [19] During exhalation, the diaphragm and intercostal muscles relax.