When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator. In general, systems with higher damping ratios (one or greater ...

  3. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    = is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:

  4. Coulomb damping - Wikipedia

    en.wikipedia.org/wiki/Coulomb_damping

    Coulomb damping is a type of constant mechanical damping in which the system's kinetic energy is absorbed via sliding friction (the friction generated by the relative motion of two surfaces that press against each other). Coulomb damping is a common damping mechanism that occurs in machinery.

  5. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  6. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    Damping; Displacement; ... exhibiting static frictional ... is a dimensionless scalar value which equals the ratio of the force of friction between two bodies and the ...

  7. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  8. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    is the undamped natural frequency and is the damping ratio. The homogeneous equation for the mass spring system is: The homogeneous equation for the mass spring system is: x ¨ + 2 ζ ω n x ˙ + ω n 2 x = 0 {\displaystyle {\ddot {x}}+2\zeta \omega _{n}{\dot {x}}+\omega _{n}^{2}x=0}

  9. Transient response - Wikipedia

    en.wikipedia.org/wiki/Transient_response

    Here damping ratio is always less than one. Critically damped A critically damped response is the response that reaches the steady-state value the fastest without being underdamped. It is related to critical points in the sense that it straddles the boundary of underdamped and overdamped responses. Here, the damping ratio is always equal to one.