Search results
Results From The WOW.Com Content Network
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol → {\displaystyle \rightarrow } is interpreted as material implication, a formula P → Q {\displaystyle P\rightarrow Q} is true unless P {\displaystyle P} is true and Q {\displaystyle Q} is false.
material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise. may mean the same as
Logical consequence (also entailment or logical implication) is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements.
13, then/if, Converse implication; 14, OR, Logical disjunction; 15, true, Tautology. Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples:
For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics ), in the sense that if the premises are true (under ...
In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression.A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system.
The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument. The history of the inference rule modus tollens goes back to antiquity. [4] The first to explicitly describe the argument form modus tollens was Theophrastus. [5] Modus tollens is closely related to modus ponens.