When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pulmonary gas pressures - Wikipedia

    en.wikipedia.org/wiki/Pulmonary_gas_pressures

    The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.

  3. Intrapleural pressure - Wikipedia

    en.wikipedia.org/wiki/Intrapleural_pressure

    At rest, there is a negative intrapleural pressure. This provides a transpulmonary pressure, causing the lungs to expand. If humans didn't maintain a slightly negative pressure even when exhaling, their lungs would collapse on themselves because all the air would rush towards the area of lower pressure. Intra-pleural pressure is sub-atmospheric.

  4. Transpulmonary pressure - Wikipedia

    en.wikipedia.org/wiki/Transpulmonary_pressure

    If 'transpulmonary pressure' = 0 (alveolar pressure = intrapleural pressure), such as when the lungs are removed from the chest cavity or air enters the intrapleural space (a pneumothorax), the lungs collapse as a result of their inherent elastic recoil. Under physiological conditions the transpulmonary pressure is always positive; intrapleural ...

  5. Mean airway pressure - Wikipedia

    en.wikipedia.org/wiki/Mean_airway_pressure

    Mean airway pressure typically refers to the mean pressure applied during positive-pressure mechanical ventilation. Mean airway pressure correlates with alveolar ventilation, arterial oxygenation, [1] hemodynamic performance, and barotrauma. [2] It can also match the alveolar pressure if there is no difference between inspiratory and expiratory ...

  6. Respiratory system - Wikipedia

    en.wikipedia.org/wiki/Respiratory_system

    The alveolar air pressure is therefore always close to atmospheric air pressure (about 100 kPa at sea level) at rest, with the pressure gradients because of lungs contraction and expansion cause air to move in and out of the lungs during breathing rarely exceeding 2–3 kPa. [18] [19] During exhalation, the diaphragm and intercostal muscles relax.

  7. Alveolar pressure - Wikipedia

    en.wikipedia.org/wiki/Alveolar_pressure

    Image illustrating transpulmonary, intrapleural and intra-alveolar pressure. Alveolar pressure (P alv) is the pressure of air inside the lung alveoli. When the glottis is opened and no air is flowing into or out of the lungs, alveolar pressure is equal to the atmospheric pressure, that is, zero cmH 2 O. [1] [2]

  8. Inhalation - Wikipedia

    en.wikipedia.org/wiki/Inhalation

    This negative pressure generates airflow because of the pressure difference between the atmosphere and alveolus. The inflow of air into the lungs occurs via the respiratory airways. In health, these airways begin with the nose. [3] [4] It is possible to begin with the mouth, which is the backup breathing system.

  9. Positive end-expiratory pressure - Wikipedia

    en.wikipedia.org/wiki/Positive_end-expiratory...

    Positive end-expiratory pressure (PEEP) is the pressure in the lungs (alveolar pressure) above atmospheric pressure (the pressure outside of the body) that exists at the end of expiration. [1] The two types of PEEP are extrinsic PEEP (PEEP applied by a ventilator) and intrinsic PEEP (PEEP caused by an incomplete exhalation).