When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stratified randomization - Wikipedia

    en.wikipedia.org/wiki/Stratified_randomization

    Graphic breakdown of stratified random sampling. In statistics, stratified randomization is a method of sampling which first stratifies the whole study population into subgroups with same attributes or characteristics, known as strata, then followed by simple random sampling from the stratified groups, where each element within the same subgroup are selected unbiasedly during any stage of the ...

  3. Stratified sampling - Wikipedia

    en.wikipedia.org/wiki/Stratified_sampling

    In statistics, stratified sampling is a method of sampling from a population which can be partitioned into subpopulations. Stratified sampling example In statistical surveys , when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation ( stratum ) independently.

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    There are many reasons to use stratified sampling: [7] to decrease variances of sample estimates, to use partly non-random methods, or to study strata individually. A useful, partly non-random method would be to sample individuals where easily accessible, but, where not, sample clusters to save travel costs. [8]

  5. Stratification (clinical trials) - Wikipedia

    en.wikipedia.org/wiki/Stratification_(clinical...

    Stratified random sampling designs divide the population into homogeneous strata, and an appropriate number of participants are chosen at random from each stratum. [1] Proportionate stratified sampling involves selecting participants from each stratum in proportions that match the general population. [ 1 ]

  6. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Finally, in some cases (such as designs with a large number of strata, or those with a specified minimum sample size per group), stratified sampling can potentially require a larger sample than would other methods (although in most cases, the required sample size would be no larger than would be required for simple random sampling). A ...

  7. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Some sampling designs that could introduce generally greater than 1 include: cluster sampling (such as when there is correlation between observations), stratified sampling (with disproportionate allocation to the strata sizes), cluster randomized controlled trial, disproportional (unequal probability) sample (e.g. Poisson sampling), statistical ...

  8. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    Simple random sampling merely allows one to draw externally valid conclusions about the entire population based on the sample. The concept can be extended when the population is a geographic area. [4] In this case, area sampling frames are relevant. Conceptually, simple random sampling is the simplest of the probability sampling techniques.

  9. Randomization - Wikipedia

    en.wikipedia.org/wiki/Randomization

    Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups. [1] [2] [3] The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. [4]