When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring, which requires less than 2 log 2 k matrix multiplications, and is therefore much more ...

  3. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication.It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices.

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  5. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    One of the reasons for the importance of the matrix exponential is that it can be used to solve systems of linear ordinary differential equations.The solution of = (), =, where A is a constant matrix and y is a column vector, is given by =.

  6. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    [5] [6] Closed form solutions can be computed for special cases such as symmetric matrices with all diagonal and off-diagonal elements equal [7] or Toeplitz matrices [8] and for the general case as well. [9] [10] In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice versa. [11]

  7. Hankel matrix - Wikipedia

    en.wikipedia.org/wiki/Hankel_matrix

    Given a formal Laurent series = =, the corresponding Hankel operator is defined as [2]: [] [[]]. This takes a polynomial [] and sends it to the product , but discards all powers of with a non-negative exponent, so as to give an element in [[]], the formal power series with strictly negative exponents.

  8. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  9. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    A symmetric real n × n matrix is called positive semidefinite if for all (here denotes the transpose, changing a column vector x into a row vector). A square real matrix is positive semidefinite if and only if = for some matrix B.