When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The definition of matrix product requires that the entries belong to a semiring, and does not require multiplication of elements of the semiring to be commutative. In many applications, the matrix elements belong to a field, although the tropical semiring is also a common choice for graph shortest path problems. [15]

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The definition varies from author to author. According to some authors, a principal submatrix is a submatrix in which the set of row indices that remain is the same as the set of column indices that remain.

  4. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  5. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Definition [ edit ] An n -by- n square matrix A is called invertible (also nonsingular , nondegenerate or rarely regular ) if there exists an n -by- n square matrix B such that A B = B A = I n , {\displaystyle \mathbf {AB} =\mathbf {BA} =\mathbf {I} _{n},} where I n denotes the n -by- n identity matrix and the multiplication used is ordinary ...

  6. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    One of the reasons for the importance of the matrix exponential is that it can be used to solve systems of linear ordinary differential equations.The solution of = (), =, where A is a constant matrix and y is a column vector, is given by =.

  8. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication.It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices.

  9. Z-matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Z-matrix_(mathematics)

    In mathematics, the class of Z-matrices are those matrices whose off-diagonal entries are less than or equal to zero; that is, the matrices of the form: = ();,. Note that this definition coincides precisely with that of a negated Metzler matrix or quasipositive matrix, thus the term quasinegative matrix appears from time to time in the literature, though this is rare and usually only in ...