Search results
Results From The WOW.Com Content Network
Nuedexta – dextromethorphan hydrobromide 20 mg/quinidine sulfate 10 mg (N=107) 283 patients (86.8%) completed the study. The number of PBA episodes (laughing, crying or aggressive outbursts) were 47% and 49% lower (based on the trial's outcome measures), respectively, for the drug-combination options than for the placebo.
There is, of course, no reason why asthma and exercise-induced bronchoconstriction should not co-exist but the distinction is important because without successful treatment of underlying asthma, treatment of an exercise component will likely be unsuccessful.
Bronchospasms can occur for a number of reasons. Lower respiratory tract conditions such as asthma, chronic obstructive pulmonary disease (COPD), and emphysema can result in contraction of the airways. Other causes are side effects of topical decongestants such as oxymetazoline and phenylephrine. Both of these medications activate alpha-1 ...
Nitrous oxide is a dental anesthetic that is used as a recreational drug, either by users who have access to medical-grade gas canisters (e.g., dental hygienists or dentists) or by using the gas contained in whipped cream aerosol containers.
Occupational asthma is new onset asthma or the recurrence of previously quiescent asthma directly caused by exposure to an agent at workplace. It is an occupational lung disease and a type of work-related asthma. Agents that can induce occupational asthma can be grouped into sensitizers and irritants. [1]
Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, [4] is a chemical compound, an oxide of nitrogen with the formula N 2 O. At room temperature, it is a colourless non-flammable gas, and has a slightly sweet scent and taste. [4]
When the gas is administered to patients, in either dental or medical offices, it "slows down (the) nervous system and induces a sense of calm and euphoria," the medical center says.
EILO may arise because of a relative mechanical 'insufficiency' of the laryngeal structures that should act to maintain glottic patency. It has been proposed that a narrowing at the laryngeal inlet during the state of high airflow (e.g. when running fast), can act to cause a pressure drop across the larynx which then acts to 'pull' the laryngeal structures together.