When.com Web Search

  1. Ad

    related to: thevenin and norton theorem examples problems and answers math word

Search results

  1. Results From The WOW.Com Content Network
  2. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response. [ 8 ] [ 9 ] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent ; use of the theorem may in some cases be more convenient ...

  3. Source transformation - Wikipedia

    en.wikipedia.org/wiki/Source_transformation

    In general, the concept of source transformation is an application of Thévenin's theorem to a current source, or Norton's theorem to a voltage source. However, this means that source transformation is bound by the same conditions as Thevenin's theorem and Norton's theorem; namely that the load behaves linearly, and does not contain dependent ...

  4. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    Edward Lawry Norton. In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor ...

  5. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    On the other hand, it might merely change the form into one in which the components can be reduced in a later operation. For instance, one might transform a voltage generator into a current generator using Norton's theorem in order to be able to later combine the internal resistance of the generator with a parallel impedance load.

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Analyst's traveling salesman theorem (discrete mathematics) Analytic Fredholm theorem (functional analysis) Anderson's theorem (real analysis) Andreotti–Frankel theorem (algebraic geometry) Angle bisector theorem (Euclidean geometry) Ankeny–Artin–Chowla theorem (number theory) Anne's theorem ; Apéry's theorem (number theory)

  7. Léon Charles Thévenin - Wikipedia

    en.wikipedia.org/wiki/Léon_Charles_Thévenin

    As a result of studying Kirchhoff's circuit laws and Ohm's law, he developed his famous theorem, Thévenin's theorem, [1] which made it possible to calculate currents in more complex electrical circuits and allowing people to reduce complex circuits into simpler circuits called Thévenin's equivalent circuits.

  8. Equivalent circuit - Wikipedia

    en.wikipedia.org/wiki/Equivalent_circuit

    In electrical engineering, an equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit. Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. [1]

  9. Edward Lawry Norton - Wikipedia

    en.wikipedia.org/wiki/Edward_Lawry_Norton

    Edward Lawry Norton (July 28, 1898 – January 28, 1983) was an accomplished engineer and scientist. He worked at Bell Labs and is known for Norton's theorem . His areas of active research included network theory, acoustical systems, electromagnetic apparatus, and data transmission.