Ads
related to: how to solve factor problems
Search results
Results From The WOW.Com Content Network
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way.
Thus solving P(x) = 0 is reduced to the simpler problems of solving Q(x) = 0 and R(x) = 0. Conversely, the factor theorem asserts that, if r is a root of P(x) = 0, then P(x) may be factored as = (), where Q(x) is the quotient of Euclidean division of P(x) = 0 by the linear (degree one) factor x – r.
Matrix decomposition. In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
Pell's equation. Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates, the equation is represented by a hyperbola; solutions ...
QR decomposition. In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular ...
Mathematics, problem solving. Publication date. 1945. ISBN. 9780691164076. How to Solve It (1945) is a small volume by mathematician George Pólya, describing methods of problem solving. [1] This book has remained in print continually since 1945.
In theoretical computer science, a computational problem is one that asks for a solution in terms of an algorithm. For example, the problem of factoring. "Given a positive integer n, find a nontrivial prime factor of n." is a computational problem that has a solution, as there are many known integer factorization algorithms.
Eigendecomposition of a matrix. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the ...