Ad
related to: other words for interpolation
Search results
Results From The WOW.Com Content Network
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
Interpolation space, in mathematical analysis, the space "in between" two other Banach spaces; Craig interpolation, in mathematical logic, a result about the relationship between logical theories; Interpolation (computer graphics), the generation of intermediate frames Image scaling, the resizing of a digital image
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.
In other words, the interpolation polynomial is at most a factor (L + 1) worse than the best possible approximation. This suggests that we look for a set of interpolation nodes that makes L small. In particular, we have for Chebyshev nodes : L ≤ 2 π log ( n + 1 ) + 1. {\displaystyle L\leq {\frac {2}{\pi }}\log(n+1)+1.}
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...
In other words, the interpolation polynomial is at most a factor Λ n (T ) + 1 worse than the best possible approximation. This suggests that we look for a set of interpolation nodes with a small Lebesgue constant. The Lebesgue constant can be expressed in terms of the Lagrange basis polynomials:
Trilinear interpolation is the extension of linear interpolation, which operates in spaces with dimension =, and bilinear interpolation, which operates with dimension =, to dimension =. These interpolation schemes all use polynomials of order 1, giving an accuracy of order 2, and it requires 2 D = 8 {\displaystyle 2^{D}=8} adjacent pre-defined ...
This page was last edited on 28 January 2020, at 04:45 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.