When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent. [8]

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Four line segments, each perpendicular to one side of a cyclic quadrilateral and passing through the opposite side's midpoint, are concurrent. [23]: p.131, [24] These line segments are called the maltitudes, [25] which is an abbreviation for midpoint altitude.

  4. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    The left-hand side of this equation is a vector that has the same direction as the line CF, and the right-hand side has the same direction as the line AB. These lines have different directions since A, B, C are not collinear. It follows that the two members of the equation equal the zero vector, and

  5. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The line joining them is then called the Pascal line of the hexagon. Brianchon: If all six sides of a hexagon are tangent to a conic, then its diagonals (i.e. the lines joining opposite vertices) are three concurrent lines. Their point of intersection is then called the Brianchon point of the hexagon.

  6. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point. It immediately follows that the algebraic condition for three lines, [a 1, b 1, c 1], [a 2, b 2, c 2], [a 3, b 3, c 3] to be concurrent is that the determinant,

  7. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.

  8. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...

  9. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A cyclic polygon with an even number of sides has all angles equal if and only if the alternate sides are equal (that is, sides 1, 3, 5, … are equal, and sides 2, 4, 6, … are equal). [11] A cyclic pentagon with rational sides and area is known as a Robbins pentagon. In all known cases, its diagonals also have rational lengths, though ...