Ad
related to: concurrent lines vs intersecting sides in real life geometry
Search results
Results From The WOW.Com Content Network
Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil.
Four line segments, each perpendicular to one side of a cyclic quadrilateral and passing through the opposite side's midpoint, are concurrent. [23]: p.131, [24] These line segments are called the maltitudes, [25] which is an abbreviation for midpoint altitude.
In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of ABC), to meet opposite sides at D, E, F respectively. (The segments AD, BE, CF are known as cevians.) Then, using signed lengths of segments,
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.
Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.
The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point. It immediately follows that the algebraic condition for three lines, [a 1, b 1, c 1], [a 2, b 2, c 2], [a 3, b 3, c 3] to be concurrent is that the determinant,
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
In the case of a line arrangement, each coordinate of the labeling assigns 0 to nodes on one side of one of the lines and 1 to nodes on the other side. [26] Dual graphs of simplicial arrangements have been used to construct infinite families of 3-regular partial cubes, isomorphic to the graphs of simple zonohedra. [27]