Search results
Results From The WOW.Com Content Network
In most logical systems, one proves a statement of the form "P iff Q" by proving either "if P, then Q" and "if Q, then P", or "if P, then Q" and "if not-P, then not-Q". Proving these pairs of statements sometimes leads to a more natural proof, since there are not obvious conditions in which one would infer a biconditional directly.
The detailed semantics of "the" ternary operator as well as its syntax differs significantly from language to language. A top level distinction from one language to another is whether the expressions permit side effects (as in most procedural languages) and whether the language provides short-circuit evaluation semantics, whereby only the selected expression is evaluated (most standard ...
A conditional sentence is a sentence in a natural language that expresses that one thing is contingent on another, e.g., "If it rains, the picnic will be cancelled." They are so called because the impact of the sentence’s main clause is conditional on a subordinate clause.
If-then-else flow diagram A nested if–then–else flow diagram. In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language constructs that perform different computations or actions or return different values depending on the value of a Boolean expression, called a condition.
It does not leave the user with one statement alone at the end of the argument, instead, it gives an option of two different statements. The first premise gives an option of two different statements. Then it states that if the first one happens, there will be a particular outcome and if the second happens, there will be a separate outcome.
Equivalent to the switch statement found in some programming languages, it is a convenient way of dealing with multiple cases without having to chain lots of #if functions together. However, note that performance suffers when there are more than 100 alternatives.
A conditional statement may refer to: A conditional formula in logic and mathematics, which can be interpreted as: Material conditional; Strict conditional;
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.