Search results
Results From The WOW.Com Content Network
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
These 2005 NASA computer model simulations—calculated based on data available at that time—illustrate how methane is destroyed as it rises. As air rises in the tropics, methane is carried upwards through the troposphere—the lowest portion of Earth's atmosphere which is 4 miles (6.4 km) to 12 miles (19 km) from the Earth's surface, into ...
Methane vapor pressure vs. temperature. Uses formula log 10 P mm Hg = 6.61184 − 389.93 266.00 + T ∘ C {\displaystyle \log _{10}P_{\text{mm Hg}}=6.61184-{\frac {389.93}{266.00+T_{^{\circ }{\text{C}}}}}} given in Lange's Handbook of Chemistry , 10th ed. Note that formula loses accuracy near T crit = −82.6 °C
Methane (US: / ˈ m ɛ θ eɪ n / METH-ayn, UK: / ˈ m iː θ eɪ n / MEE-thayn) is a chemical compound with the chemical formula CH 4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas.
More than 70% of atmospheric methane comes from biogenic sources. Methane levels have risen gradually since the onset of the industrial era, [13] from ~700 ppb in 1750 to ~1775 ppb in 2005. [10] Methane can be removed from the atmosphere through a reaction of the photochemically produced hydroxyl free radical (OH).
The main strategy currently used to increase the reactivity of methane uses transition metal complexes to activate the carbon-hydrogen bonds. In a typical C-H activation mechanism, a transition metal catalyst coordinates to the C-H bond to cleave it, and convert it into a bond with a lower bond dissociation energy.
Catalyst deactivation is defined as a loss in catalytic activity and/or selectivity over time. Substances that decrease reaction rate are called poisons . Poisons chemisorb to catalyst surface and reduce the number of available active sites for reactant molecules to bind to. [ 22 ]
Methane has a limited atmospheric lifetime, about 10 years, due to substantial methane sinks. The primary methane sink is atmospheric oxidation, from hydroxyl radicals (~90% of the total sink) and chlorine radicals (0-5% of the total sink). The rest is consumed by methanotrophs and other methane-oxidizing bacteria and archaea in soils (~5%). [5]