When.com Web Search

  1. Ad

    related to: continuity equation for unsteady flow

Search results

  1. Results From The WOW.Com Content Network
  2. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    Other equations in physics, such as Gauss's law of the electric field and Gauss's law for gravity, have a similar mathematical form to the continuity equation, but are not usually referred to by the term "continuity equation", because j in those cases does not represent the flow of a real physical quantity.

  3. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).

  4. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.

  5. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The flow speed of a fluid can be measured using a device such as a Venturi meter or an orifice plate, which can be placed into a pipeline to reduce the diameter of the flow. For a horizontal device, the continuity equation shows that for an incompressible fluid, the reduction in diameter will cause an increase in the fluid flow speed.

  6. Open-channel flow - Wikipedia

    en.wikipedia.org/wiki/Open-channel_flow

    An example of flow entering a channel would be a road side gutter. An example of flow leaving a channel would be an irrigation channel. This flow can be described using the continuity equation for continuous unsteady flow requires the consideration of the time effect and includes a time element as a variable.

  7. Taylor–Green vortex - Wikipedia

    en.wikipedia.org/wiki/Taylor–Green_vortex

    In fluid dynamics, the Taylor–Green vortex is an unsteady flow of a decaying vortex, which has an exact closed form solution of the incompressible Navier–Stokes equations in Cartesian coordinates. It is named after the British physicist and mathematician Geoffrey Ingram Taylor and his collaborator A. E. Green. [1]

  8. Burgers vortex - Wikipedia

    en.wikipedia.org/wiki/Burgers_vortex

    1.1 Unsteady evolution to Burgers's vortex. 2 Burgers vortex layer. ... The flow satisfies the continuity equation by the two first of the above equations.

  9. Incompressible flow - Wikipedia

    en.wikipedia.org/wiki/Incompressible_flow

    And so using the continuity equation derived above, we see that: D ρ D t = − ρ ( ∇ ⋅ u ) . {\displaystyle {D\rho \over Dt}={-\rho \left(\nabla \cdot \mathbf {u} \right)}.} A change in the density over time would imply that the fluid had either compressed or expanded (or that the mass contained in our constant volume, dV , had changed ...