Search results
Results From The WOW.Com Content Network
The increase of air temperature at stratospheric altitudes results from the ozone layer's absorption and retention of the ultraviolet (UV) radiation that Earth receives from the Sun. [7] The coldest layer of the atmosphere, where the temperature lapse rate changes from a positive rate (in the troposphere) to a negative rate (in the stratosphere ...
The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air, and in that process it redistributes the energy absorbed by the Earth's surface near the tropics to the latitudes nearer the ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
The Lower troposphere - TLT (originally called T2LT). The mid troposphere - TMT; The lower stratosphere - TLS [3] Data are provided as temperature anomalies against the seasonal average over a past basis period, as well as in absolute temperature values. The baseline period for the published temperature anomalies was changed in January 2021 ...
Although variations do occur, the temperature usually declines with increasing altitude in the troposphere because the troposphere is mostly heated through energy transfer from the surface. Thus, the lowest part of the troposphere (i.e. Earth's surface) is typically the warmest section of the troposphere.
The actual rate at which atmospheric temperature changes with altitude, as measured by a radiosonde; this is in contrast to the rate predicted by the theoretical process lapse rate. On average, the temperature of the troposphere decreases with height at a rate of 6.5 °C (11.7 °F) per kilometre, but this rate is influenced by many factors.
Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere.
In a completely moist troposphere, a temperature decrease with height less than 6 °C (11 °F) per kilometer ascent indicates stability, while greater changes indicate instability. In the range between 6 °C (11 °F) and 9.8 °C (17.6 °F) temperature decrease per kilometer ascent, the term conditionally unstable is used.