When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable.

  4. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...

  5. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    On the other hand, the inverse image or preimage under f of an element y of the codomain Y is the set of all elements of the domain X whose images under f equal y. [6] In symbols, the preimage of y is denoted by f − 1 ( y ) {\displaystyle f^{-1}(y)} and is given by the equation

  6. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    In mathematics, the fiber ... under a function is the preimage of the singleton set }, [1]: p.69 ... must be restricted to the image set of , since ...

  7. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The first isomorphism theorem for monoids states that this quotient monoid is naturally isomorphic to the image of f (which is a submonoid of N; for the congruence relation). This is very different in flavour from the above examples. In particular, the preimage of the identity element of N is not enough to determine the kernel of f.

  8. Image (category theory) - Wikipedia

    en.wikipedia.org/wiki/Image_(category_theory)

    In a category with all finite limits and colimits, the image is defined as the equalizer (,) of the so-called cokernel pair (,,), which is the cocartesian of a morphism with itself over its domain, which will result in a pair of morphisms ,:, on which the equalizer is taken, i.e. the first of the following diagrams is cocartesian, and the second equalizing.

  9. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...