Ads
related to: wave properties worksheet pdf grade 10
Search results
Results From The WOW.Com Content Network
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
Wave-particle duality is the concept in quantum mechanics that fundamental entities of the universe, like photons and electrons, exhibit particle or wave properties according to the experimental circumstances. [1]: 59 It expresses the inability of the classical concepts such as particle or wave to fully describe the behavior of quantum objects ...
Wave properties may refer to: Physical properties of waves : transmission, reflection, polarization, diffraction, refraction and others Mathematical description of waves : amplitude, frequency, wavelength, and others
In mathematics, a dynamical system is chaotic if it is (highly) sensitive to initial conditions (the so-called "butterfly effect" [62]), which requires the mathematical properties of topological mixing and dense periodic orbits. [63] Alongside fractals, chaos theory ranks as an essentially universal influence on patterns in nature.
A standing wave, also known as a stationary wave, is a wave whose envelope remains in a constant position. This phenomenon arises as a result of interference between two waves traveling in opposite directions. The sum of two counter-propagating waves (of equal amplitude and frequency) creates a standing wave. Standing waves commonly arise when ...
Transverse waves are contrasted with longitudinal waves, where the oscillations occur in the direction of the wave. The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves ...
For example, if an electron wave packet is initially localized in a region of atomic dimensions (i.e., 10 −10 m) then the width of the packet doubles in about 10 −16 s. Clearly, particle wave packets spread out very rapidly indeed (in free space): [17] For instance, after 1 ms, the width will have grown to about a kilometer.
If the wave is a sound wave and the sound source is moving faster than the speed of sound, the resulting shock wave creates a sonic boom. Lord Rayleigh predicted the following effect in his classic book on sound: if the observer were moving from the (stationary) source at twice the speed of sound, a musical piece previously emitted by that ...