When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  3. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    Glide-reflection symmetry with respect to two parallel lines with the same translation implies that there is also translational symmetry in the direction perpendicular to these lines, with a translation distance which is twice the distance between glide reflection lines.

  4. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Glide reflections, denoted by G c,v,w, where c is a point in the plane, v is a unit vector in R 2, and w is non-null a vector perpendicular to v are a combination of a reflection in the line described by c and v, followed by a translation along w. That is,

  5. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. [1] [self-published source] [2] [3] The rigid transformations include rotations, translations, reflections, or any

  6. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

  7. Symmetry operation - Wikipedia

    en.wikipedia.org/wiki/Symmetry_operation

    In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.

  8. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    Rotations about an axis combined with translation along that axis are in the same class if the angle is the same and the translation distance is the same. Reflections in a plane are in the same class; Reflections in a plane combined with translation in that plane by the same distance are in the same class.

  9. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...