When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number of steps to calculate the GCD of two natural numbers, a and b, may be denoted by T(a, b). [96] If g is the GCD of a and b, then a = mg and b = ng for two coprime numbers m and n. Then T(a, b) = T(m, n) as may be seen by dividing all the steps in the Euclidean algorithm by g. [97]

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    So, Euclid's method for computing the greatest common divisor of two positive integers consists of replacing the larger number with the difference of the numbers, and repeating this until the two numbers are equal: that is their greatest common divisor. For example, to compute gcd(48,18), one proceeds as follows:

  4. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  5. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.

  6. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that

  7. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    The above formulas lead to an efficient O(log a log b) [3] algorithm for calculating the Jacobi symbol, analogous to the Euclidean algorithm for finding the gcd of two numbers. (This should not be surprising in light of rule 2.) Reduce the "numerator" modulo the "denominator" using rule 2.

  8. Gödel (programming language) - Wikipedia

    en.wikipedia.org/wiki/Gödel_(programming_language)

    The following Gödel module is a specification of the greatest common divisor (GCD) of two numbers. It is intended to demonstrate the declarative nature of Gödel, not to be particularly efficient. The CommonDivisor predicate says that if i and j are not zero, then d is a common divisor of i and j if it lies between 1 and the smaller of i and j ...

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd( p , q ) = 1 means that the invertible constants are the only common divisors.