When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called GaussJordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    Row echelon form. In linear algebra, a matrix is in row echelon form if it can be obtained as the result of Gaussian elimination. Every matrix can be put in row echelon form by applying a sequence of elementary row operations. The term echelon comes from the French échelon ("level" or step of a ladder), and refers to the fact that the nonzero ...

  4. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The lambdas are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1][2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.

  5. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises naturally in solving a system of linear equations such as [7] . Assuming that the submatrix is invertible, we can eliminate from the equations, as follows. Substituting this expression into the second equation yields. We refer to this as the reduced equation obtained by eliminating from the original equation.

  6. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    Elementary matrix. In mathematics, an elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation. The elementary matrices generate the general linear group GLn(F) when F is a field. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while right ...

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1][2] For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously ...

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    This formula simplifies significantly when the upper right block matrix B is the zero matrix. This formulation is useful when the matrices A and D have relatively simple inverse formulas (or pseudo inverses in the case where the blocks are not all square. In this special case, the block matrix inversion formula stated in full generality above ...

  9. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve ...