Search results
Results From The WOW.Com Content Network
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.
The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [ 2 ] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound ), radio waves , and light .
In most cases this is a longitudinal wave of pressure (such as sound), but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling. [2]
A wave can be longitudinal where the oscillations are parallel (or antiparallel) to the propagation direction, or transverse where the oscillations are perpendicular to the propagation direction. These oscillations are characterized by a periodically time-varying displacement in the parallel or perpendicular direction, and so the instantaneous ...
The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound, thus forming the sound wave. At a fixed distance from the source, the pressure, velocity, and displacement of the medium vary in time. At an instant in time, the ...
In many media, such as air, the speed of sound is approximately independent of frequency, so the wavelength of the sound waves (distance between repetitions) is approximately inversely proportional to frequency.
The speed of propagation of a wave is equal to the wavelength divided by the period, or multiplied by the frequency: v = λ τ = λ f . {\displaystyle v={\frac {\lambda }{\tau }}=\lambda f.} If the length of the string is L {\displaystyle L} , the fundamental harmonic is the one produced by the vibration whose nodes are the two ends of the ...
The parameter defines the amplitude of the wave (that is, the maximum sound pressure in the bore, which is related to the loudness of the note); is the speed of sound; is the length of the bore; and is a positive integer (1,2,3,...) that specifies the number of nodes in the standing wave.