Search results
Results From The WOW.Com Content Network
Characterization of the sine, tangent, and secant functions using certain vertical lines. SVG redraw from original work. Date: 4 July 2008: Source: en:Image:Unitcircledefs.png: Author: en:User:Michael Hardy (original); Pbroks13 (redraw) Other versions: Derivative works of this file: Unitcircledefs-2.svg
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Abu al-Wafa had sine tables in 0.25° increments, to 8 decimal places of accuracy, and accurate tables of tangent values. [16] He also made important innovations in spherical trigonometry [ 17 ] [ 18 ] [ 19 ] The Persian polymath Nasir al-Din al-Tusi has been described as the creator of trigonometry as a mathematical discipline in its own right.
The following outline is provided as an overview of and topical guide to trigonometry: . Trigonometry – branch of mathematics that studies the relationships between the sides and the angles in triangles.
Illustration of the sine and tangent inequalities. The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = =
Write the functions without "co" on the three left outer vertices (from top to bottom: sine, tangent, secant) Write the co-functions on the corresponding three right outer vertices (cosine, cotangent, cosecant) Starting at any vertex of the resulting hexagon: The starting vertex equals one over the opposite vertex.