When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}

  3. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  4. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    A function is bijective if and only if it is invertible; that is, a function : is bijective if and only if there is a function :, the inverse of f, such that each of the two ways for composing the two functions produces an identity function: (()) = for each in and (()) = for each in .

  5. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  6. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  7. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    The above theorem generalizes in the obvious way to holomorphic functions: Let and be two open and simply connected sets of , and assume that : is a biholomorphism. Then f {\displaystyle f} and f − 1 {\displaystyle f^{-1}} have antiderivatives, and if F {\displaystyle F} is an antiderivative of f {\displaystyle f} , the general antiderivative ...

  8. Inverse relation - Wikipedia

    en.wikipedia.org/wiki/Inverse_relation

    In mathematics, inverse relation may refer to: Converse relation or "transpose", in set theory; Negative relationship, in statistics; Inverse proportionality; Relation between two sequences, expressing each of them in terms of the other

  9. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    One application is the definition of inverse trigonometric functions. For example, the cosine function is injective when restricted to the interval [0, π]. The image of this restriction is the interval [−1, 1], and thus the restriction has an inverse function from [−1, 1] to [0, π], which is called arccosine and is denoted arccos.