When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    In fluid mechanics and transport phenomena, an eddy is not a property of the fluid, but a violent swirling motion caused by the position and direction of turbulent flow. [4] A diagram showing the velocity distribution of a fluid moving through a circular pipe, for laminar flow (left), time-averaged (center), and turbulent flow, instantaneous ...

  4. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    Various explicit approximations of the related Darcy friction factor have been developed for turbulent flow. Stuart W. Churchill [5] developed a formula that covers the friction factor for both laminar and turbulent flow. This was originally produced to describe the Moody chart, which plots the Darcy-Weisbach Friction factor against Reynolds ...

  5. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    Laminar flow tends to dominate in the fast-moving center of the pipe while slower-moving turbulent flow dominates near the wall. As the Reynolds number increases, the continuous turbulent-flow moves closer to the inlet and the intermittency in between increases, until the flow becomes fully turbulent at Re D > 2900. [ 13 ]

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is f = ⁠ 16 / Re ⁠, it is the Fanning factor f, and if the formula for laminar flow is f D = ⁠ 64 / Re ⁠, it is the Darcy–Weisbach factor f D.

  7. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    It is an exact solution for the Hagen–Poiseuille equation in the laminar flow regime and an approximation of the implicit Colebrook–White equation in the turbulent regime with a maximum deviation of less than 2.38% over the specified range.

  8. Turbulence - Wikipedia

    en.wikipedia.org/wiki/Turbulence

    With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities.

  9. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...