When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    The Luhn algorithm or Luhn formula, also known as the "modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers.

  3. Luhn mod N algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_mod_N_algorithm

    The Luhn mod N algorithm is an extension to the Luhn algorithm (also known as mod 10 algorithm) that allows it to work with sequences of values in any even-numbered base. This can be useful when a check digit is required to validate an identification string composed of letters, a combination of letters and digits or any arbitrary set of N ...

  4. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The generator computes an odd 128-bit value and returns its upper 64 bits. This generator passes BigCrush from TestU01, but fails the TMFn test from PractRand. That test has been designed to catch exactly the defect of this type of generator: since the modulus is a power of 2, the period of the lowest bit in the output is only 2 62, rather than ...

  5. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    A modification of Lagged-Fibonacci generators. A SWB generator is the basis for the RANLUX generator, [19] widely used e.g. for particle physics simulations. Maximally periodic reciprocals: 1992 R. A. J. Matthews [20] A method with roots in number theory, although never used in practical applications. KISS: 1993 G. Marsaglia [21]

  6. Check digit - Wikipedia

    en.wikipedia.org/wiki/Check_digit

    The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct. It may need to have the value 10, which is represented as the letter X. For example, take the ISBN 0-201-53082-1: The sum of products is 0×10 + 2×9 + 0×8 + 1×7 + 5×6 + 3×5 + 0×4 + 8×3 + 2×2 + 1×1 = 99 ≡ 0 (mod 11). So ...

  7. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Use the extended Euclidean algorithm to compute k −1, the modular multiplicative inverse of k mod 2 w, where w is the number of bits in a word. This inverse will exist since the numbers are odd and the modulus has no odd factors. For each number in the list, multiply it by k −1 and take the least significant word of the result.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Multiply-with-carry pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Multiply-with-carry...

    Thus, a multiply-with-carry generator is a Lehmer generator with modulus p and multiplier b −1 (mod p). This is the same as a generator with multiplier b, but producing output in reverse order, which does not affect the quality of the resultant pseudorandom numbers.