Search results
Results From The WOW.Com Content Network
Basket winding (or basket-weave winding or honeycomb winding or scatter winding) is a winding method for electrical wire in a coil. The winding pattern is used for radio-frequency electronic components with many parallel wires, such as inductors and transformers. The winding pattern reduces the amount of wire running in adjacent, parallel turns.
Radio frequency chokes (RFC) often have iron powder or ferrite cores which increases inductance and overall operation. [1] They are often wound in complex patterns (basket winding) to reduce self-capacitance and proximity effect losses. Chokes for even higher frequencies have non-magnetic cores and low inductance.
The wire is fed through a guiding tube. Before starting the actual winding process, the wire is mounted to a post or a clamping device of the coil body or winding device. By the linear laying movement of the wire guiding tube, the component to be wound is turned in a way that the wire is distributed throughout the winding space of the coil body.
Ferrite loopstick antenna from an AM radio having two windings, one for long wave and one for medium wave (AM broadcast) reception. About 10 cm (4 inches) long. Ferrite antennas are usually enclosed inside the radio receiver. Ferrite loop antennas are made by winding fine wire around a ferrite rod. They are almost universally used in AM ...
A coil with a core which is a straight bar or other non-loop shape is called an open-core coil. This has lower magnetic field and inductance than a closed core, but is often used to prevent magnetic saturation of the core. A coil without a ferromagnetic core is called an air-core coil. [14]
A loading coil or load coil is an inductor that is inserted into an electronic circuit to increase its inductance. The term originated in the 19th century for inductors used to prevent signal distortion in long-distance telegraph transmission cables.
Radiofrequency coils (RF coils) are the receivers, and sometimes also the transmitters, of radiofrequency (RF) signals in equipment used in magnetic resonance imaging (MRI). The MR signal in MRI is produced by the process of resonance, which is the result of radiofrequency pulses.
In radio frequency tuned circuits used in radio equipment, proximity and skin effect losses in the inductor reduce the Q factor, broadening the bandwidth. To minimize this, special construction is used in radio frequency inductors. The winding is usually limited to a single layer, and often the turns are spaced apart to separate the conductors.