Search results
Results From The WOW.Com Content Network
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.
The different types of edge in a bidirected graph. In the mathematical domain of graph theory, a bidirected graph (introduced by Edmonds & Johnson 1970) [1] is a graph in which each edge is given an independent orientation (or direction, or arrow) at each end. Thus, there are three kinds of bidirected edges: those where the arrows point outward ...
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A simplex graph is an undirected graph κ(G) with a vertex for every clique in a graph G and an edge connecting two cliques that differ by a single vertex. It is an example of median graph , and is associated with a median algebra on the cliques of a graph: the median m ( A , B , C ) of three cliques A , B , and C is the clique whose vertices ...
Several graph-theoretic concepts are related to each other via complementation: The complement of an edgeless graph is a complete graph and vice versa. Any induced subgraph of the complement graph of a graph G is the complement of the corresponding induced subgraph in G. An independent set in a graph is a clique in the complement graph and vice ...
A trivial example. In mathematics, the mountain climbing problem is a mathematical problem that considers a two-dimensional mountain range (represented as a continuous function), and asks whether it is possible for two mountain climbers starting at sea level on the left and right sides of the mountain to meet at the summit, while maintaining equal altitudes at all times.
Finding ψ(G) is an optimization problem.The decision problem for complete coloring can be phrased as: . INSTANCE: a graph G = (V, E) and positive integer k QUESTION: does there exist a partition of V into k or more disjoint sets V 1, V 2, …, V k such that each V i is an independent set for G and such that for each pair of distinct sets V i, V j, V i ∪ V j is not an independent set.