Search results
Results From The WOW.Com Content Network
Adverse yaw is the natural and undesirable tendency for an aircraft to yaw in the opposite direction of a roll.It is caused by the difference in lift and drag of each wing. The effect can be greatly minimized with ailerons deliberately designed to create drag when deflected upward and/or mechanisms which automatically apply some amount of coordinated rudde
Spoiler controls can be used for roll control (outboard or mid-span spoilers) or descent control (inboard spoilers). Some aircraft use spoilers in combination with or in lieu of ailerons for roll control, primarily to reduce adverse yaw when rudder input is limited by higher speeds.
The asymmetric lift causes asymmetric drag, which causes the aircraft to yaw adversely. To correct the yaw, the pilot uses the rudder to perform a coordinated turn. In a multi-engined aircraft, the loss of thrust in one engine can also cause adverse yaw, and here again the rudder is used to regain coordinated flight.
A preliminary report is expected within 30 days of the date of the event." ... A Dutch roll is a maneuver that involves simultaneous yaw (side-to-side motion across a flat horizontal plane) and ...
The yaw motion is induced through the use of ailerons alone due to aileron drag, wherein the lifting wing (aileron down) is doing more work than the descending wing (aileron up) and therefore creates more drag, forcing the lifting wing back, yawing the aircraft toward it. This yawing effect produced by rolling motion is known as adverse yaw.
However, in the beginning of a turn, when the ailerons are being applied in order to bank the airplane, the ailerons also cause an adverse yaw of the airplane. For example, if the airplane is rolling clockwise (from the pilot point of view), the airplane yaws to the left. It assumes a crab-like attitude relative to the wind.
The absence of adverse yaw eliminates the need to use rudder for coordinated flight, but proper and prompt use of rudder is vital to counter the aircraft's tendency to roll in reaction to engine torque; at low airspeed, the aircraft will rapidly roll and enter an accelerated stall if the pilot applies full power without adequate preparation ...
A conventional aeroplane is unstable in yaw and needs a tail fin to keep it straight. Movement of the ailerons creates an adverse yaw pulling it out of the turn, which also has to be compensated by the rudder. While a swept wing is stable in straight flight, it still experiences adverse yaw during a turn.